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Preface 
 
This part of the course Basics of Traffic Engineering  (H111) deals with the theory of 
traffic flow. This theory studies the dynamic properties of traffic on road sections.  
 
We begin this course with a theoretical framework in which the characteristics of traffic 
flow are described at the microscopic level. We then examine a number of dynamic 
models that were formulated on the basis of empirical research. We conclude with a 
discussion of some recent observations on congestion.  
 
The theories and models that will be discussed are developed on the basis of numerous 
observations on motorways. There is a difference between motorways and lower order 
roads such as provincial roads and urban streets. For the latter it are the intersections that 
dominate flow characteristics to a large degree. Traffic flow on intersections is the 
subject of a separate workshop on Signal-Controlled Intersections (H112).  
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1 Trajectories and microscopic variables 
 
This chapter develops a theoretical framework in which the characteristics of traffic flows 
are described at the microscopic level. In a microscopic approach to traffic, each vehicle 
is examined separately.  
 

 
Figure 1 A road with two vehicles along an x-axis and the same vehicles in a t-x 

co-ordinate system 

 
On the left side in Figure 1, along a vertical X-axis, xα indicates the position of vehicle α 
at time t0. The vehicle in front of this vehicle is indicated by α+1. Since both vehicles 
travel across the road, their positions are time dependent. The right side of Figure 1 
presents the vehicles in a t-x co-ordinate system.  
 
The position of a vehicle through time is called a trajectory. In this course we use the rear 
point, the rear bumper of a vehicle, as the point of reference for the trajectory of that 
vehicle. Figure 1 uses bold black lines to indicate the trajectories of vehicles α en α+1. 
The grey area represents the entire vehicle. 
 
It is impossible for two trajectories to intersect when the vehicles travel on the same 
traffic lane. The speed vα of a vehicle if given by the derivative with respect to the 
trajectory. The second derivative is the acceleration aα. Accelerating cars have positive 
values for ax and braking cars have negative values for aα. 
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A vehicle occupies a specific part of the road. This space occupancy or simply space sα 
consists of the physical length of the vehicle Lα and the distance dα kept by the driver to 
the vehicle in front, or: 
 

  
Analogously to space, vehicles also use a certain segment of time which is called 
headway h. This headway time consists of the interval time or gap g and the occupancy o. 

  
At constant speeds, or in general when acceleration is neglected, occupancy becomes:  
 

  
 
The speed difference ∆v is given by: 
 

  
These variables can all be measured. Two aerial photographs taken in quick succession 
give us the positions, the speeds, the occupancies, the headways and the gaps. Using 
detection loops (that work on the magnetic-induction-principle) and detection cameras 
the speed, space, length and distance of vehicles can be measured fairly inexpensively.  
 
Roads usually show a variety of vehicle types and drivers. We call the idealised traffic 
state with only one type of road user homogeneous. A traffic state is stationary when it 
does not change over time. When this is the case, vehicles on homogeneous roads share 
the same speeds and trajectories are straight lines.  
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2 Macroscopic variables 
 
At the macroscopic  level we do not look at the vehicles as separate entities. The 
traditional traffic demand model discussed elsewhere in this course is a macroscopic 
model. This macroscopic level is also relevant to the dynamic description of traffic. This 
section defines the macroscopic variables that translate the discrete nature of traffic into 
continuous variables.  

2.1 A measurement interval 
 
A measurement interval S is defined as an area in the t-x space. When macroscopic 
variables are defined later on, it is always done for a certain measurement interval. Figure 
2 and Figure 3 below show some measurement intervals:   
 
• S1:  This rectangular measurement interval covers a road section of length ∆X during 

an infinitely small time interval dt. This coincides approximately with a location 
interval ∆X at a specific moment t1. We assume that n vehicles move through this 
interval and in the text we shall indicate them by index i. Such a location interval 
could be recorded from an aeroplane on an aerial photograph.  

• S2:  This rectangular measurement interval represents an infinitely small road length 
dx  during a time interval of ∆T. This coincides approximately with a time interval ∆T 
at a location x2. In further derivations we assume that m trajectories cross this 
measurement interval and for these m vehicles we use the index j.  Induction loops 
and detection cameras have been placed on several locations of our road network and 
these measure the traffic during time intervals.  

 
Figure 2 Trajectories and the measurement intervals S1 and S2 
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• S3 is an arbitrary measurement interval in time and space. This measurement interval 

has an area Opp(S3) with dimensions time * space . Several trajectories traverse this 
measurement interval. The distance travelled by a vehicle in the measurement interval 
is the projection of its trajectory on the x-axis. The time spent by this vehicle in the 
measurement interval is the projection of the matching trajectory on the time-axis.  

 

 
Figure 3 The measurement interval S3 

 
  

2.2 Density 
Density is a typical variable from physics that was adopted by traffic science. Density k 
reflects the number of vehicles per kilometre of road. For a measurement interval at a 
certain point in time, such as S1, k can be calculated over a road section with ∆X length 
as:  

  
The index n indicates the number of vehicles at t1 on the location interval ∆X. Total space 
of the n vehicles can be set equal to ∆X, thus: 

  
Figure 4 Location interval S1   

 
where the mean space occupancy in the interval S1 is defined as:  
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Density k depends on the location, time and the measurement interval. We will, therefore, 
rewrite formula (2.1), in order to include these dependent factors in our notation. For the 
location x1 we take the centre of the measurement interval ∆X. 

  
Density is traditionally expressed in vehicles per kilometre. Maximal density on a road 
fluctuates around 100 vehicles per kilometre per traffic lane.  
 
The density definition in (2.4) is confined to a certain point in time. The next step is to 
generalise this definition If we multiply numerator and denominator of (2.4) by the 
infinitely small time interval dt around t1, density becomes:   

  
The denominator of (2.5) now becomes equal to the area of the measurement interval S1. 
The numerator reflects the total time spent by all vehicles in the measurement interval S1. 

 
In the same way we define the density at location x, at time t and for a measurement 
interval S as: 

By way of illustration: 
Density according to definition (2.7) for x2, t2 in the measurement interval S2, as 
illustrated once more in Figure 5: 

  
 

 
Figure 5 Time interval S2  
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2.3 Flow rate 
 
The flow rate q can be compared to the discharge or the flux of a stream. The flow rate 
represents the number of vehicles that passes a certain cross-section per time unit. For a 
time interval ∆T at any location x2, such as the measurement interval S2 in Figure 5, the 
flow rate is calculated as follows:  

  
The index m represents the number of vehicles that passes location x2 during ∆T.  This 
time interval is the sum of the m headways. Through the introduction of a mean headway 
h  we find the following expression for the traffic flow rate: 

hh
mq

m
j

1==
∑

   (2.10) 

The flow rate is expressed in vehicles per hour. We call the maximum possible flow rate 
of any road its capacity. Depending on vehicle composition, the capacity of a motorway 
lies between 1800 and 2400 vehicles per hour per traffic lane.  
 
This definition of flow rate (2.9) is limited to a time interval. We get a more general 
definition by multiplying the numerator and the denominator with an infinitely small 
location interval dx  around x2. The denominator again becomes the area of the 
measurement interval and the numerator equals the total distance travelled by all vehicles 
in the measurement interval.  
 

(2.11)       
)(S Area

Sin  sby vehicle covered distance Total
.

.
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2

2
222 =

∆
=

dxT
dxm

Stxq  

This leads to a general definition for flow rate:  
 

(2.12)               
(S) Area

Sin  sby vehicle covered distance Total
),,( =Stxq  

 
By way of illustration: 
 
Applying (2.12) we calculate the flow rate for the measurement interval S1, at location x1 
and time t1: 
 

  

2.4 Mean speed 
 
We define the mean speed u as the quotient of the flow rate and the density.  
The mean speed is also a function of location, time and measurement interval. Note that 
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the area of the measurement interval no longer appears in definition (2.14): 
 

(2.14)       
Sin  sby vehiclespent   timeTotal

Sin  sby vehicle covered distanc Total
),,(
),,(

),,( ==
Stxk
Stxq

Stxu  

 
In another form this definition of the mean speed is also called the fundamental relation 
of traffic flow theory:  

This relation irrevocably links flow rate, density and mean speed. Knowing two of these 
variables immediately leads to the remaining third variable.  
 
We calculate the mean speed for the measurement intervals S1 and S2 as follows: 
 
For the location interval S1 the density is given by (2.5) and the flow rate by (2.13). The 
mean speed for these n vehicles in the interval S1 at location x1 and point in time t1 then 
becomes:  
 

  
We get the mean speed for a location interval by averaging the speeds of all of the 
vehicles in this interval.  
 
For the time interval S2, density was calculated in (2.8) and flow rate in (2.9). The mean 
speed for m vehicles then becomes:  
 

  
This shows that the mean speed over a time interval is the harmonic mean of the 
individual speeds.  
 
If we take the normal arithmetical average of the individual vehicle speeds in a time 
interval we get the time-mean speed ut, as defined in (2.18):  

  
 
 
This time-mean speed ut differs from the mean speed u and does therefore, NOT comply 
with the fundamental relation (2.15).  
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The difference between the mean speed and the time-mean speed is illustrated by the 
example below: 

 
Figure 6 Motorway with two traffic lanes. 

Consider a long road with two traffic lanes, where all vehicles on the right traffic lane 
travel at 60 km/h and the vehicles on the left lane at 120 km/h. All the vehicles on the 
first traffic lane that passed a detector during a 1 minute time interval can be found on a 1 
kilometre long road section. For the left traffic lane, the length of this road section equals 
2 kilometres. Thus, when the time-mean speed is assessed, faster cars are considered over 
a much longer road section than slower cars. When we calculate mean speed, and also 
when we calculate density, the length of the road section used is the same for fast and 
slow cars. Therefore, the proportion of fast vehicles is overestimated when calculating 
time-mean speed thus making it always larger than or equal to the mean speed.  
 
Example problem: 

Assume for that 1200 vehicles/hour pass on both traffic lanes in the example 
above. What are the density, the flow rate, the mean speed and the time-mean 
speed on this road?  

 
Solution: 
q  = 2400 vehicles/hour 
k = 30 vehicles/km 
u = 80 km/hour 
ut = 90 km/hour 
 

Analogously we can also define the space-mean speed ux for a location interval as the 
mean of the speeds of all vehicles in this location interval or:  

  
Equation (2.16) shows that the space mean speed equals the mean speed as defined in 
(2.14). 
 
Thus we distinguish three definitions: the mean speed u, the time-mean speed ut and the 
space-mean speed ux. Here u always equals ux and the fundamental relation applies to 
these definitions. The time-mean speed ut is different and does NOT comply with the 
fundamental relation.  
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2.5 Relative occupancy 
 
Most traffic measurements are carried out at a fixed location x2. The occupancy o of a 
vehicle is easy to measure in such cases. The relative occupancy b in time interval S2 is 
given by: 

 
If we assume that all vehicles have the same length, we get a relation between the relative 
occupancy b and the density k. Verify that inserting  (1.6), (2.9), (2.17) and (2.15) in 
(2.20) leads to:  

  
Example: 

Consider a stream of traffic with mean speed of 60 km/h and a flow rate of 1200 
vehicles/hour. All vehicles are 4 meters in length. What is the relative occupancy?  
 
The density k = q / u = 20 vehicles/km. 
A density of 20 vehicles/km means a space occupancy of 50 metres per vehicle. 
The vehicle takes 4 metres, or 8% of the space. So relative occupancy = 8%. 
Computing the density and length in (2.21) also gives:  
b = L . k  = 0.004 .20 = 8 % 
 

This formula cannot be used in practical situations because a traffic stream is never 
homogeneous in reality. If we want to find traffic density by using traffic detectors, it is 
better to measure the flow rate and mean speed using (2.8) and (2.17) and then to 
calculate density using the fundamental relation (2.15). 

2.6 Conclusion 
 
The macroscopic traffic variables can be calculated for every location, at any point in 
time and for every measurement interval. In practice we mostly use traffic detectors that 
measure the macroscopic variables u and q across a certain time interval. If we want to 
calculate the mean speed u for a time interval, we must take the harmonic mean of the 
individual speeds. The discrete nature of traffic requires time intervals of at least half a 
minute if we want to achieve meaningful information. When the time intervals exceed a 
duration of five minutes, certain dynamic characteristics are lost. 
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3 Fundamental diagram 
 
The previous chapter defined three macroscopic variables: flow rate q, density k and 
mean speed u. Because of the fundamental relation q = k.u (2.15) there are only two 
independent variables. This chapter introduces an empirical relation between the two 
remaining independent variables. We do this by assuming stationary (flow rates do not 
change along the road and over time) and homogeneously composed traffic flow (all 
vehicles are equal). This means that we can simplify the notation somewhat because the 
dependence on location, time and measurement interval no longer applies in a stationary 
flow. 

3.1 Observations. 
 
On a three-lane motorway we measured the flow rate q and the mean speed u during time 
intervals of one minute. Each observation, therefore, gives a value for the mean speed u 
and a value for the flow rate q. Figure 7 shows the different observation points in a q-u 
diagram. 

 
Figure 7 Observation points in a q-u diagram 

  
We calculate the density k (= q / u) for each observation. This means that the points of 
observation can also be plotted in a k-q diagram (Figure 8) and a k-u diagram (Figure 9). 
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Figure 8 Observation points in a k-q diagram. 

  

 

Figure 9 Observation points in a k-u diagram. 

The observations were carried out on an actual motorway where traffic is not 
homogeneous: there is a variety of vehicle types and drivers behave in a variety of ways. 
Nor is real traffic stationary: vehicles accelerate and decelerate continuously. Abstracting 
from the inhomogeneous and non-stationary characteristics, we can describe the 
empirical characteristics of traffic using an equilibrium relation that we can present in the 
form of the three diagrams shown above.  
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3.2 The fundamental diagrams 
 
Road traffic is always in a specific state that is characterised by the flow rate, the density 
and the mean speed. We combine all the possible homogeneous and stationary traffic 
states in an equilibrium function that can be described graphically by three diagrams. The 
equilibrium relations presented in this way are better known under the name of 
fundamental diagrams. Figure 10 sketches them and it shows the relationship between 
each of the diagrams..  

 
Figure 10 The three related fundamental diagrams  

A diagram shows the relation between two of the three variables. The third variable can 
always be recovered by means of the relationship q = k.u. The third variable in the q-u 
and the k-q diagram is an angle. The flow rate in the k-u diagram is represented by an 
area. A fundamental diagram applies to a specific road and is drawn up on the basis of 
observations. Thus stationary and homogeneous traffic is always in a state that is located 
on the bold black line. Some special state points require extra attention: 
 
• Completely free flowing traffic 

When vehicles are not impeded by other traffic they travel at a maximum speed of uf  
(free speed). This speed is dependent, amongst other things, on the design speed of a 
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road, the speed restrictions in operation at any particular time and the weather. At free 
speed, flow rate and density will be close to zero.  

• Saturated traffic 
On saturated roads flow rate and speed are down to zero. The vehicles are queuing 
and there is a maximum density of k j (jam density). 

• Capacity traffic 
The capacity of a road is equal to the maximum flow rate qc. The maximum flow rate 
of qc has an associated capacity speed of uc and a capacity density of kc. The diagram 
shows that the capacity speed uc lies below the maximum speed uf . 

 

3.3 Mathematical models for the fundamental diagrams 
 
In this section we present mathematical expressions for the equilibrium relations given by 
the fundamental diagrams. We examine the original diagram of Greenshield and the 
triangular diagram.  
 
• Greenshield  (1934) 
 
Greenshield drew up a first formulation that was based on a small number of slightly 
questionable measurements. In this formulation the relation in the k-u diagram is assumed 
to be linear, leading to parabolic relations for the remaining diagrams (see Error! 
Reference source not found.).  

 
Figure 11 The fundamental diagrams according to Greenshield 

 
In Greenshield's diagrams, the capacity speed uc is half the maximum speed uf. The 
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capacity density kc in this model is half the maximum density kj. This formulation is a 
rough simplification of observed traffic behaviour, but is still frequently used because of 
its simplicity and for historical reasons. The equilibrium function in the k-u diagram can 
be written as::  

  
Applying the fundamental relation gives the other relations ( Qe(k) and Ue(q) ). Note that 
the relation Ue(q) is not a function! 
 

  
 
• Triangular diagram 
 
A second much-used formulation assumes that the fundamental k-q diagram is triangular 
in shape. This simple diagram has many advantages in dynamic traffic modelling, as will 
be discussed in Chapter 4.  
 
In this equilibrium relation the mean speed equals the maximum speed for all traffic 
states that have densities smaller than the capacity density. The branch of the triangle that 
links the capacity state with the saturated state, has a negative constant slope w. Figure 12 
represents this triangular diagram. 

 
Figure 12 The fundamental diagrams when a triangular k-q diagram applies 
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4 Macroscopic traffic flow model 
 
In the two previous chapters we learned that the fundamental relation (q=k.u) and the 
fundamental diagrams (Figure 10) enable us to describe the traffic state of stationary and 
homogeneous traffic. Thus we can calculate the two remaining variables for a given value 
of a macroscopic variable. When traffic is stationary and homogeneous, we know that the 
values for these variables will remain constant along the entire road and for some 
extended period.  
However, real traffic is neither homogeneous nor stationary. In this chapter our aim is to 
describe the evolution of traffic over time. In doing so, we will ignore the dependency on 
the measurement interval S in the notation in order to discover the dynamic relation 
between q(x,t), u(x,t) and k(x,t). We assume, therefore, that we are dealing with point 
variables: variables that are singularly defined at any moment and at every location. By 
doing this we can show these three variables as functions in the t-x plane. 

4.1 Derivation and formulation 
 
We use a traffic conservation law to describe the changes in time and location of the 
macroscopic variables along a road. The fundamental relation q(x,t)=k(x,t).u(x,t) 
continues to apply.  
 
We divide the road to be modelled in cells with a length of ∆x. The density of cell i at 
time tj is indicated by k(i,j). The number of vehicles in the cell is k(i,j).∆x . One time 
interval ∆t later, at tj+1, density has changed as follows (see Figure 14): 
 
• A number of vehicles travelled from cell i- l into cell i. The expected inflow is given 

by q(i-1,j). ∆t 
• From cell i a number of vehicles travelled to cell i+l. This outflow is given by q(i,j). 

∆t 
• Feeder- and exit roads enable in- and outflows that are indicated by z(i,j).∆x.∆t where 

z is expressed per time- and length-unit and is taken positive for an increase in the 
number of vehicles. 

 
Figure 13 Derivation of the conservation law 
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For cell i at time tj we can now write  the following formulation of the state:  
 

  
or: 

 
 
Taking the limit with respect to the time step and letting cell length approach zero results 
in the following partial differential equation representing the conservation law of traffic: 

We add another assumption to this conservation law: All possible dynamic traffic states 
comply with the stationary fundamental diagrams. This means that although traffic states 
on roads can change over time, they still comply with the fundamental diagrams at each 
moment and at every location. Therefore the successive traffic states 'move' as it were 
across the bold black lines in the fundamental diagrams.  
 
This assumption allows us to write the flow rate in function of density as follows:  

 
Inserting (4.4) in (4.3) and applying the chain rule gives a partial differential equation 
that only contains partial derivatives with respect to density.  

 
In (4.5) the expression z(x,t) represents the volume of traffic that enters the road at time t 
and location x (a negative value for exiting traffic) and dQe(k)/dk , or in short Qe’(k) 
represents the derivative of the fundamental k-q function. In the subsequent derivation we 
assume a concave fundamental diagram which means that Qe’(k) will always decrease for 
increasing densities.  
 
Using the fundamental diagram in the traffic conservation law led to the first dynamic 
traffic model in the 1950s. This model was named after the people who first proposed it: 
the LWR-model (Lighthill, Whitham, Richards). Several schemes were developed to 
numerically solve this equation with the help of a computer in order to obtain a traffic 
model that could be applied to practical situations. In the following section we will study 
this equation in an analytical way in order to gain some insight into some of the dynamic 
characteristics of a traffic stream.  
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4.2 Characteristics 
 
The partial differential equation (4.5) is known in mathematical analysis as the "Burgers 
equation". It can be solved analytically with the help of given boundary conditions. If we 
apply the equation to a road without feeder- and exit lanes and if, for the sake of 
convenience, we assume that Qe’(k) equals c, the conservation equation (4.5) can be 
simplified to:  

  
Solving this equation means finding the traffic density on this road in function of time 
and location. The solution to this equation is given by:  

  
where F is an arbitrary function. By inserting (4.7) in (4.6) we can verify that (4.7) does 
indeed solve the partial differential equation. The solution implies that when x-ct  is 
constant, density also remains constant. This means that all points on a straight line with 
slope c have the same density.  
 
Example: 

For a point on the x-axis (x = x0 and t = 0) equation (4.7) gives: k(x0,0) = F(x0). 
At (x0+ct, t ) density k(x0+ct, t) also equals F(x0). 
Thus all points on the straight line with slope c through (x0,0) have the same 
density equal to k(x0,0). 
 

If we know the value of the density at a point, we can draw a straight line through that 
point with slope c. The density then remains constant along this line. Such a straight line 
is known as a solution line or characteristic.  
 
We sketch the t-x diagram in Figure 14a. Assume that the initial value in x0 equals k0. A 
straight line with slope c can then be drawn through x0 along which density also equals 
k0. 

 
Figure 14 (a) the t-x diagram and (b) the k-q fundamental diagram 

In actual fact the value of c equals Qe’(k0). This is the derivative of the fundamental 
diagram function for k0. In other words, c equals the slope of the tangent to the 
fundamental k-q diagram in k0. We can now draw the k-q diagram to scale with the t-x 
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diagram so that equal slopes in both diagrams correspond to the same speed. It is now 
possible to draw a line parallel to the tangent to the fundamental diagram through a point  
in the t-x diagram where we know the initial condition.  
 
From the initial- and boundary conditions we can draw solution lines where the traffic 
state is known. A specific value for the density k0 always corresponds to an associated 
flow rate q0  and a mean speed u0. Along a characteristic both density, flow rate and mean 
speed remain constant. Note, from the fundamental diagram in Figure 14b, that vehicle 
speed always exceeds the speed c of the characteristics.  
 
We divide the various traffic states into traffic regimes according to the slope of the 
characteristics:  
 
• Free flow 

When density lies below the capacity dens ity kc, we speak of free flow. During this 
regime the mean speed of the traffic stream exceeds the capacity speed uc . During 
free flow the speed of the characteristics c = Qe’(k) is positive. As a result, the 
characteristics run in the same direction as the traffic flow. This means that the 
properties of the traffic flow propagate in the same direction as the traffic flow itself 
(see Figure 14). The slope of the characteristics c, however, is always below the mean 
vehicle-speed u0. Thus the properties of the traffic regime move at a lower speed than 
the individual vehicles.  

 
• Congested flow  

When traffic speed lies below the capacity speed uc or when traffic density lies 
between the capacity density kc and the maximum density kj we speak of congested 
flow. It is the regime in which tailbacks develop. During congestion Qe’(k) is 
negative. The characteristics run opposite to the direction of travel (see Figure 15) 
and the properties of the traffic flow propagate against the direction of the vehicle 
stream. 

 
Figure 15 (a) the t-x diagram and (b) the fundamental diagram at congested flow 

  
• Capacity flow 

Capacity flow is considered to be a separate regime. In this regime the flow rate is 
maximal. At capacity flow Qe’(k) equals zero and the characteristics run parallel to 
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the time-axis. This regime cannot propagate in either direction relative to the traffic 
stream. Capacity flow remains at the same location and functions as an upstream 
boundary for congested flow and a downstream boundary for free flow. We call the 
locations where this traffic regime occurs the bottlenecks in a traffic network.  

 
The table below gives an summary: 
 

Traffic regime k c Direction of characteristics 
Free flow k < kc c = Qc'(k) > 0 With traffic stream 

Capacity flow k = kc c = Qc'(k) = 0 Stationary 
Congested flow k > kc c = Qc'(k) < 0 Against traffic stream 

 
 
Example: 

In Figure 16 the characteristics (bold lines) and trajectories (dotted lines) are 
drawn when the initial- and boundary conditions are known: everywhere a density 
of k0. Note that we could, in fact, draw an infinite number of characteristics. The 
number of trajectories, on the other hand, is finite. A characteristic is, by 
definition, a straight line along which density is constant. In this example the 
density is constant along all curves, including the trajectories. 

 
Figure 16 Trajectories and characteristics at homogeneous initial- and boundary 

conditions. 

4.3  Shock waves 
 
Consider a road with two traffic densities at time t = 0. For x < x 0 traffic density is k1 and 
for  x > x0 density is k2 with k2 > k1. 
 
We call the transition between the two traffic states in x0 a front. Characteristics upstream 
of the front depart with a speed of c1 = Qe’(k1). Downstream of x0 characteristics depart 
with a speed of c2 = Qe’(k2). Since k1 is smaller than k2 and since the fundamental 
diagram is concave, the speed of the characteristics upstream of the front will exceed c2. 
Thus is would appear that the different characteristics cross each other (see Figure 17). 
This, however, is impossible: on a well-specified location in the t-x diagram only one 
traffic state can prevail. Thus there must be a clear transition between these two traffic 
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states. At time t = 0 this transition occurs at location x0. We will see how this front moves 
over time. 
 

 
Figure 17 Characteristics at an increase in density 

 
Let us assume that this front travels at speed U12 and  consider the traffic flow across the 
front. 

 
Figure 18 Calculating the speed of the front 

 
The flow rate upstream of the front is q1 = k1 . u1. A moving observer sees a relative flow 
rate that depends on his own travel speed. An observer with speed U12 just upstream of 
the front sees a relative flow rate qr1=k1.(u1 – U12). An observer with the same speed of 
U12 just downstream from the front sees a relative intensity of qr2 = k2.(u2 – U12). If we 
assume that our observer moves with the front, he sees a relative flow rate qr1 upstream of 
the front and downstream he sees a relative flow rate qr2. Since the conservation of 
vehicles also applies to the front, these two relative flow rates are equal or:  
qr1 = k1.(u1 – U12) = qr2 = k2 (u2 – U12) 
 
This gives us the speed of the front as being:  

  
 
Thus the tailback front from the initial condition travels at a speed of U12 in the form of a 
shock wave. Characteristics end in the shock wave and the traffic state shows a 
discontinuous change. Trajectories that cross a shock wave change their speed abruptly.  
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The speed of the shock wave can also be read graphically from the fundamental diagram. 
To this end we indicate the two traffic states by the co-ordinates (k1,q1) and (k2,q2) as 
shown in Figure 19b. The slope of the connecting line between these two points is U12. 
Consequently, the shock wave in the t-x diagram runs parallel to the connecting line 
between the two traffic states in the fundamental diagram. In this way we can draw the 
shock wave graphically in the t-x diagram, see Figure 19a.  
 
We will now look at the direction in which the shock wave propagates. Since the density 
of the downstream traffic exceeds that of the traffic upstream, the sign of U12 equals the 
sign of (q2 – q1). When the downstream  flow rate exceeds the upstream flow rate, as in 
Figure 19, the shock wave moves in the traffic stream direction. When the downstream 
flow rate is smaller than the upstream flow rate, the shock wave moves against the traffic 
stream. 

 
Figure 19 A shock wave in (a) the t-x diagram and (b) in the fundamental k-q 

diagram 

Example: 
We examine the evolution of traffic on a road (Figure 20) with traffic state 'A' as the 
initial condition for all points x < x1 and for all points t > 0 on the boundary  x = 0. In 
addition the initial condition 'B' applies between x1 and x2, and downstream for x> x2, the 
traffic state is 'C'. 

 
Figure 20 Merging shock waves 

Starting from on the initial- and boundary conditions we can draw characteristics that run 
parallel to the tangents of the associate traffic states in the fundamental diagram. The 
shock wave between traffic states 'A' and 'B' runs with the direction of flow. The shock 
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wave between 'B' and 'C' runs against the traffic flow. Traffic state 'B' disappears at the 
point where these two shock waves meet. At this point a shock wave starts that separates 
traffic states 'A' and 'C'.  

4.4 Fans 
 
We just saw that shock waves emerge when the density downstream exceeds the 
upstream density. In Figure 21 we consider a road where the downstream density (k1) is 
below the density upstream (k2). 

 
Figure 21 Characteristics at decreasing density 

The characteristics downstream of x0 show a speed c1 that exceeds the downstream 
characteristic speed of c2. This causes an empty space, as it were, in the t-x diagram 
between the characteristics that depart from x0 at speeds c1 and c2. Since each point in the 
t-x diagram has a traffic state, we must find a solution to this problem.  
 

 
Figure 22 Spreading out an abrupt density change 

Let us assume the abrupt transition of the traffic state k2 to k1 at x0 to be a gradual one, as 
in Figure 22. In that case all intermediate densities occur and characteristics depart with 
all speeds possible between c2 and c1. A fan of characteristics, therefore, departs from x0 
with the result that all intermediate densities occur in the solution in the t-x diagram 
(Figure 23).  
 
The horizontal characteristic in the fan corresponds to the capacity regime. This is an 
essential property of the LWR model: the transition from upstream congestion to a free 
flow traffic regime downstream always happens via a capacity regime.  The outflow from 
the tailback is always optimal.   
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Figure 23 A fan of characteristics at a decrease of density 

  
Example: 

We examine a road with traffic state 'A' as initial and boundary condition, except 
between x0 en x1 where for t = 0 to traffic state 'B' applies as illustrated in Figure 
24.  
 
A shock wave arises at the transition from 'A' to 'B'  and a fan arises at the 
transition from 'B' to 'A'. The shock wave will continue to be a straight line as 
long as it keeps the homogeneous states 'A' and 'B' separated.  When the 
characteristics in the fan collide with traffic state 'A' the shock wave becomes a 
curved line. Note the emergence of the capacity regime at x1 (a horizontal 
characteristic). At x1, the slope of the shock wave that makes the transition to 
traffic state 'A' equals the slope between 'A' and 'C' in the fundamental diagram. 

 
Figure 24 Example using fans and shock waves 

With the use of characteristics, shock waves and fans, we can construct a solution starting 
from the initial and boundary conditions. However, there are additional rules for the 
boundary conditions. Characteristics with negative speeds, for example, are unable to 
cross the upstream boundary (the t-axis). Because from that moment there is congestion 
upstream of our boundary condition and the solution affects the boundary condition itself. 
 



 24 

4.5 Triangular fundamental diagram. 
 
To this point we worked with a general concave fundamental diagram. In our further 
elaboration of the LWR model we will use a triangular fundamental diagram as proposed 
in chapter 2, Figure 12. The derivative to this diagram is discontinuous. For densities 
below the capacity density, Qe’(k) equals the free flow speed uf. For densities above kc, 
Qe’(k) equals w.  We accommodate the discontinuity of Qe’(k) by assuming that all 
intermediate values (between uf and w) occur in kc. 
 
Applying the triangular fundamental diagram has the following advantages:  
• During the free flow regime the speed of the characteristics is uf. This speed is equal 

to that of the speed of the vehicles. During free flow, trajectories and characteristics 
run parallel.  

• Shock waves between two states within the free flow regime also have the uf speed. 
These shock waves, that run parallel to the characteristics and trajectories, are called 
‘slips’. 

• Shock waves between two states of congestion run via a fixed speed w.  
• The speed of characteristics in fans varies between w and uf. The density of all these 

intermediate characteristic speeds is kc. Thus, the traffic state in a fan is automatically 
that of the capacity regime.  

 
All of these considerations are illustrated in the following example:  
 
Example: 

Again we look at a road with a traffic state 'A' as initial- and boundary constraint, 
except for the area between x1 and x2 where the traffic state 'B' applies in the 
beginning, as in Figure 25. Traffic state 'C' occurs in the fan between 'B' and 'A'. 
Here the road functions in the capacity regime. Now the shock wave between 
traffic state 'A' and the fan is no longer a curve line, but a 'slip': a shock wave that 
runs parallel to the characteristics and that has a speed of uf.. 

 
Figure 25 Shock waves and fans with a triangular fundamental diagram 
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4.6 Non-homogeneous roads 
 
So far we looked at traffic on homogeneous roads. We can now compute the propagation 
of characteristics, shock waves and fans on such homogeneous road sections. However, 
disturbances such as shock waves and fans are caused by non-homogeneous points in 
traffic networks. The conservation of vehicles still applies to these transitions. We will 
use a number of examples to examine the mechanisms and traffic states. 
 

4.6.1 A traffic light 
 
Our first example examines a traffic light. (see Figure 26). Consider a road where traffic 
state 'A' functions as initial- and boundary constraint. The traffic light at location xs, 
switches to red between ts and te. Traffic directly upstream of the halt line will become 
completely saturated and cause traffic state 'J'. The flow rate in this state is zero, 
complying with the stop condition. This causes a shock wave between traffic states 'A' 
and 'J'. The halt line functions as an upstream boundary constraint with a traffic state 'J' 
and from this point characteristics leave at speed w against the direction of the traffic 
stream. The larger the flow rate of traffic state 'A', the larger the speed with which the 
shock wave propagates against the travel direction. 
  
The traffic downstream of the halt line is in a 'full free flow' state 'O'. The flow rate here 
is also zero. The shock wave between traffic states 'A' and 'O' is a slip with speed uf. Here 
the halt line functions as a downstream boundary constraint pertaining to traffic state 'O' 
where characteristics leave with speed uf. 
 
When the stop condition ends at te, we can see the road once again as a road with the 
following initial conditions:  
• Traffic state A for x < x1 (= xs + (te-ts) / UAJ) 
• Traffic state J for  x1 < x <xs 
• Traffic state O for x > xs 
 
The solution to this problem results in a fan between traffic states 'J' and 'O', and two 
shock waves that will eventually merge in a slip at (tm,xm).  
 
The example clearly shows that ending the stop condition leads to a capacity regime on 
the road and also shows that the length of the queue decreases from that point onwards. 
When the queue has been dissolved the original traffic state reappears. Also note the 
abrupt speed changes in the shock waves.  In practice deceleration and acceleration will 
take some time which means that the shock wave will be somewhat elongated. 
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Figure 26 Traffic light (a) characteristics (b) fundamental diagram (c) simulated 

trajectories 

  

4.6.2 Narrowing of a road with a temporary traffic overload. 
 
In a second example we examine a three- lane road that is reduced to two lanes between x3 
and x5 (see Figure 28). The maximum speed at the constriction remains at uf, capacity 
flow rate and saturated density reduce to two thirds of the original values. We examine 
the evolution of traffic over this road taking traffic state 'A' as the initial condition. 
Between t0 and t1 traffic state 'D' is the upstream boundary condition and beyond t1 ‘A’ 
applies again.  
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Note that the flow rate qD exceeds the capacity qC2 of the constriction.  
 
The characteristics departing from the initial condition travel at speed uf. The transition at 
x3 and x5 in not problematic. States 'A' and 'D' are separated from each other by a slip 
through the origin. This shock wave is able to continue to the constriction without any 
problems. The constriction can only process a capacity of qc2 and this creates a boundary 
condition downstream: the flow rate will equal capacity qc2 of the constriction, and the 
traffic state will be one of congestion. The flow rate of traffic state 'B' will equal the 
capacity of the constriction and is located in the congestion area of the fundamental 
diagram of the three- lane road.  
 
The shock wave between traffic states 'B' and 'D' runs against the flow direction (QD 
exceeds QB). At t1 a shock wave emerges between ‘D’ and ‘A’. When this shock wave 
meets the one between 'D' and 'B', the traffic regime 'D' disappears permanently. From 
this point a new forward shock wave begins between 'A' and 'B' and this shock wave 
reduces the congestion. When this wave reaches the constriction, the tailback has 
resolved itself. In the constricted section the capacity regime will fan out. At the end of 
the constriction, at x5, the continued flow rate causes a continuation of state 'C2'. In the 
fundamental diagram of the three- lane road, traffic state 'C2' is part of the free traffic 
regime and its characteristics travel at speed uf. 
 
We examine the evolution of the traffic states exactly as an observer would do if he was 
standing by the side of the road. At a sufficient distance upstream from the constriction, 
in x1 for example, the observer notes a temporary increase in flow rate qD. There is no 
sign of congestion. Closer to the constriction at x2, our observer would note a temporary 
increase in flow rate qD after traffic state 'A' that exceeds the capacity in the constricted 
section. This is followed by a tailback where the flow rate is equal to the capacity of the 
bottleneck. The tailback is followed by a free traffic regime with a flow rate below that of 
the capacity of the constriction. 

 
Figure 27 The fundamental k-q diagram for a constricted motorway 

 
Congestion never occurs in a constriction, such as at x4. The traffic state evolves from 'A' 
to the capacity regime 'C2' .  
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Figure 28 The t-x diagram of a motorway with a constricted section 

Beyond the constriction, as in x6, one never sees flow rates that exceed the capacity of the 
constriction.  
 
An observer upstream of a constriction, or more usual of a bottleneck, will only see a 
temporary flow rate greater than the bottleneck capacity. This higher flow rate will be 
followed by congestion depending on the distance to the bottleneck  
 
An observer downstream from a bottleneck will never see a flow rate that exceeds the 
capacity of the bottleneck.  
 
The operation of 'bottlenecks' is an important mechanism in the functioning of our road 
network. Their location and timing determine the location and length of tailbacks. In the 
example, the physical constriction of the mo torway caused a bottleneck. There are other 
causes for similar 'bottleneck'-effects:  
 
• When a large volume of traffic enters a motorway via a feeder road, the traffic 

demand beyond the feeder road is significantly larger than the demand upstream of 
the feeder road. Capacity just beyond the feeder road is reached faster often initiating 
a bottleneck.  
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• A local non-homogenous situation (i.e. a number of trucks trailing each other, …) can 
temporarily reduce local capacity somewhat, which can lead to the formation of a 
bottleneck. 

• Accidents also cause a temporary and local decrease in capacity, which causes the 
feared 'bottleneck' effect.  

• Bad weather reduces capacity. This can be of a very local nature (i.e. the formation of 
ice on bridges). 
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5 Microscopic traffic flow models. 
 
In this section traffic is not modelled using aggregate variables such as density, flow rate 
or mean speed. The microscopic level deals with the interactions between individual 
drivers, vehicles and the infrastructure. 

5.1 General structure 
 
Microscopic traffic models describe the interactions between the various vehicles. Since 
it is impossible to predict the behaviour of each driver with absolute certainty, stochastic 
models are commonly used for this purpose. They are implemented in the form of a 
computer simulation model. Driver- and vehicle properties at time t + ∆t are computed 
on the basis of their values at time t. This is how, for example, the position and speed of 
all vehicles are computed. In contrast to macroscopic models this method makes it easier 
to specify different types of vehicles and drivers. The required computing power and the 
large number of parameters sometimes impede the use of these models.  
 
Most micro-simulation models contain the following components:  
• The car-following model 

This model assesses the behaviour of a specific vehicle on the basis of the driving 
behaviour of the vehicle ahead.  

• The lane-change model 
This deals with the way in which vehicles change lanes based on the vehicles around 
them.  

• Route choice model 
As we saw in the static traffic demand model, vehicles need to find the shortest route 
through an infrastructure network. We use a dynamic OD (Origin-Destination) table. 
The OD table is specified per time period (for 15 minutes, for example).  

• Additional modules 
Because position, speed and acceleration of each separate vehicle is known at every 
time segment (for example at time intervals of half a second), it is quite easy to 
calculate derived effects such as pollution, noise pollution, time loss and economic 
costs.  

 
In addition to vehicle characteristics, we can also model a number of dynamic 
characteristics connected to the infrastructure such as traffic lights, weather and 
accidents. 
 

5.2 Car-following model 
 
In this paragraph we discuss a simple example of the car-following model. This model 
describes the acceleration of a vehicle using the properties of the car in front of it.  
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Formula 5.1 assumes that the acceleration is proportional to the speed difference with the 
car in front. When both vehicles travel at the same speed, the acceleration is zero. It is 
assumed that the acceleration of a vehicle is inversely proportional to the square of the 
distance to the vehicle in front. The influence of the vehicle in front increases as the 
distance between the two vehicles decreases.  

  
This formula has two parameters:  
• Tr : The reaction time of the vehicle. Either the driver's reaction to changes is delayed, 

or he reacts to changes that happened some time Tr ago.  
• Sens: Driver sensitivity. This factor models the intensity of the reaction of a driver to 

changes in the behaviour of the car in front of him.  
 
The figures below show the following behaviour of a vehicle. Both vehicles depart from 
a stationary position. The second driver follows at a distance (or rather a space) of 100 
meters while the first car accelerates during 20 seconds at a rate of 1 m/s² and then brakes 
to stand-still at a rate of –1 m/s². The reaction time amounts to 1 second and sensitivity is 
5000 m²/s. 

 
Figure 29 An experiment using the car-following model formula (5.1) 
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In stationary and homogeneous traffic the speed difference and consequently the 
acceleration is always zero. In such circumstances a link can be made to the fundamental 
diagrams by integrating both sides of  formula (5.1) with respect to time:  
(keeping in mind that: dsα( t) / dt = ∆vα (t) ) 

  
In this expression C is an integration constant. In homogeneous and stationary traffic the 
speed is constant and the same for all vehicles. This means that the reaction time Tr is of 
no importance and the mean  speed u equals vα. The space occupied is equal for all 
vehicles and consequently equals the average space s. We can apply the link with density 
from 2.2 to arrive at the following:  
 

  
 
The integration constant and the sensitivity level can then be taken from the boundary 
conditions:  
• at a density of zero, the speed is uf. 
• at a speed of zero, the density is at its maximum and equals k j  
 
This leads to the expression: 
 

  
 
Expression 5.4 describes the relation from the fundamental k-u diagram and it 
corresponds to the formulation (3.1). This car-following model was constructed in such a 
way that for stationary and homogeneous traffic it leads to the fundamental diagrams of 
Greenshield. Different car-following models, in their turn, lead to different fundamental 
diagrams.  
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6 A real-life tailback 
 
This last chapter analyses an actual traffic pattern and discusses some additional effects. 
 

6.1 Description of the road section 
As our example we will use an eight-kilometre long section of the E17 Gent - Antwerp 
motorway just before the Kennedy tunnel. The motorway has three feeder- and exit roads 
on the right followed by an exit road on the left and two feeder roads on the left-hand 
side. The motorway bends to the right between kilometres 6 and 7. Fifteen camera 
detectors, numbered from CLO F to CLO I, measure the traffic flow rate (vehicles/min) 
and the average speed (km/hour) per minute on the three traffic lanes. The study area is 
shown schematically in Figure 30.  
 

 
Figure 30 A part of the E17 with traffic detectors  

  
Figure 31 shows the flow rate and average speeds of the three traffic lanes on 28 
September 1999. The time axis is drawn horizontally, the location vertically. Vehicles 
travel from bottom left to top right.  
 

 
Figure 31 Observations : (above) average speed [km/hour],(below) flow rate 

[veh/min] 
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6.2 Analysis according to the macroscopic traffic flow model.. 
 
First the measurement results will be discussed with the macroscopic traffic flow model 
of chapter 4 in mind. This traffic model distinguishes three traffic regimes: 'Free flow', 
'capacity flow and 'congested flow'.  
 
Before 7.10 am traffic moves in the 'free flow regime'. In this regime vehicles travel at 
high speed and the state points lie on the top branch of the fundamental flow-speed 
diagram. The traffic state depends on the state upstream of the road section under 
examinatio n. This is why small fluctuations in the traffic demand give rise to waves that 
move in the travel direction. These waves can only be seen when one looks at the flow 
rate. This indicates that the speed is independent of the flow rate. In other words, we are 
dealing with a horizontal branch in the flow-speed diagram (as in Figure 12 on the right). 
 
At the CLO3 detector the capacity of the road is reached at 7.10 am, due to an increased 
supply via the first left feeder road. This 'capacity regime' continues to 9.30 am and the 
state points of this regime lie on the extreme right in the fundamental flow-speed 
diagram.  
 
The 'congestion regime' originates in the bottleneck and propagates against the travel 
direction. Speed is low and the traffic state is determined by the bottleneck upstream. We 
now are on the lower branch in the fundamental flow-speed diagram.  
 
The three regimes that are derived from the macroscopic traffic flow model, are clearly 
distinguishable in the traffic data. 

6.3 Additional empirical characteristics. 
 
The traffic measurements show that there are effects other than the three regimes. These 
additional effects cannot be explained on the basis of the traffic flow model.  
 
The flow leaving the bottleneck lies below the maximum flow rate that is achieved during 
the 'free- flow regime'. This is why the flow rate of the traffic downstream of the 
bottleneck, a 'free flow' regime with the bottleneck as boundary condition, lies below that 
of the bottleneck regime. We call this effect the capacity drop. 
 
It also appears that the bottleneck starts to operate when the flow rate exceeds 100 
vehicles per minute across the three traffic lanes and that it disappears only when the 
flow rate goes below 70 vehicles per minute. This hysteresis effect, therefore, prolongs 
the bottleneck regime beyond what would appear necessary. Figure 32 plots the various 
state points at the bottleneck location in a q-u diagram. When these points are 
chronologically connected it appears that the start and the end of bottleneck regimes 
follow different paths.  
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Figure 32 Fundamental q – u diagram where successive state points have been 
connected 

  
The waves inside the 'congestion regime' in Figure 32 cannot be explained using the 
macroscopic model in chapter 4. These start -and-stop-waves emerge through small 
disturbances in the bottleneck and they develop into larger waves of strongly varying 
flow rate and speed.  
 
The first two congestion waves have a period of 10 minutes. There is, in fact, a period of 
'free flow' traffic in between these waves. Subsequent waves show lower vehicle speeds 
and there is progressively less time between each wave. Characteristic of these waves is 
that they move at constant speed against the travel direction. Drivers cross these waves 
and experience them as a succession of acceleration and deceleration.  
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